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Abstract

We present a simple ANDOS protocol for the case of more than one

buyer. The protocol uses bits left invariant when a one-way function is

applied to a binary number.

1 Introduction

S is a seller of secrets who has listed a number of questions and offers to sell
the answer to any of them at a huge price which we assume to be the same for
each of the secrets. The secrets could be of political importance, for instance,
concerning the whereabouts of a sought-after terrorist or concerning the contents
of a secret pact between two countries. A buyer B wants to buy a secret but
does not want to disclose which one. For instance, B might be an agent of a
country. Disclosing the ignorance of the country concerning a specific matter
might be delicate or even dangerous and might, in fact, induce a new secret for
S to sell.

The abbreviation ANDOS (All or Nothing Disclosure of Secrets) is used
in [1] for protocols dealing with the situation described above. Although this is
not important, we may assume that the secrets are factorizations of products of
two large primes. Indeed, if the original secrets are encrypted using RSA (with
a different RSA system for each secret), then a particular secret can be read
whenever the factorization of the corresponding modulus becomes known.

More background material is contained in [3]. Apart from being of interest
on their own right, ANDOS protocols can be used as building blocks in more
sophisticated protocols. Of special interest among such protocols are the pro-
tocols for secret balloting systems when elections are carried over a computer
network. Among the conditions to be met, [2], are the secrecy of votes and
exclusion of illegal votes, as well as the possibility of each voter to check that
his/her (hereinafter her) vote is taken into account and also to cancel her vote.



2 One buyer

Assume that s1, . . . , sk are secrets possesed by S, each of them containing
n bits. For each si, S has publicized what the secret is about. B has de-
cided to buy the secret sj . S should transfer it to her without learning the
index j. The following is an obvious first try for a protocol.

Step 1. S tells B a one-way function f mapping n-bit numbers into n-bit num-
bers but keeps the inverse f−1 to herself.

Step 2. B chooses k random n-bit numbers x1, . . . , xk and tells S the k-tuple
(y1, . . . , yk), where

yi =

{

xi if i 6= j,
f(xi) if i = j.

Step 3. S tells B the sequence of numbers

si ⊕ f−1(yi), i = 1, . . . , k.

(Here ⊕ denotes bitwise addition, also called XOR.)

Step 4. B is able to compute sj since she knows xj = f−1(yj).

Clearly, S has no way of distinguishing the exceptional value yj and, hence,
does not learn which secret B wants. On the other hand, if B is an active
cheater (that is, deviates from the protocol), she can present several or all of
the numbers yi to S in the form f(xi).

In the next protocol B has no way of cheating but if S is an active cheater,
she can learn which secret B wants. Thus, the situation is reverse to that
encountered in the previous protocol.

For an injection f mapping n-bit numbers into n-bit numbers and an n-bit
number x, we say that an index i, 1 ≤ i ≤ n, is a fixed bit index (FBI) with
respect to the pair (x, f) if the i’th bit in x equals the i’th bit in f(x). Clearly,
i is FBI with respect to (x, f) iff i is FBI with respect to (f(x), f−1). If f
has a reasonably random behaviour (like the customarily considered encryption
functions) then, for a random x, roughly n/2 indices are FBI’s with respect to
(x, f).

We are now ready for the protocol.

Step 1. S tells B a one-way function f but keeps the inverse f−1 to herself.
She also tells B k random n-bit numbers x1, . . . , xk.

Step 2. B (who wants to buy sj) tells S all FBI’s with respect to (xj , f).

Step 3. S tells B the numbers

si ⊕ f−1(yi), i = 1, . . . , k,

where yi is obtained from xi by replacing all bits whose indices are not in
the FBI set of Step 2 with their complements.



Step 4. Since f−1(yj) = xj , B is able to compute sj .

The buyer B cannot cheat to get two secrets since the numbers xj are chosen
by S. On the other hand, S can find j by computing FBI’s with respect to each
pair (xi, f) and comparing them with the set of Step 2.

A more sophisticated protocol can be used to prevent both S and B from
cheating. B commits herself to a specific action, that is, specifies which secret
she wants to buy. The commitment is ”locked in a box” using a one-way func-
tion, but in the course of the protocol B has to convince S that she is acting
according to the commitment. This should be done without disclosing infor-
mation about the action itself—a typical case of a minimum disclosure proof.
Details of such a protocol are hinted at in [1].

3 Two buyers

The difficulties met in the preceding section can be overcome in a simple way in
the case of two buyers B and C who want to buy secrets sj and sj′ , respectively.
The idea is that the buyers have individual one-way functions and each of them
operates on numbers provided by the other.

Step 1. S tells B and C individually one-way functions f and g but keeps the
inverses to herself.

Step 2. B tells C (respectively C tells B) k random n-bit numbers x1, . . . , xk

(respectively x′

1
, . . . , x′

k).

Step 3. B tells C (respectively C tells B) the set FBIB of FBI’s with respect
to (x′

j , f) (respectively the set FBIC of FBI’s with respect to (xj′ , g)).

Step 4. B (respectively C) tells S the numbers y1, . . . , yk (respectively y′

1
, . . . ,

y′

k), where yi results from xi by replacing every bit whose index is not in
FBIC with its complement (respectively y′

i results from x′

i by replacing
every bit whose index is not in FBIB with its complement).

Step 5. S tells to B (respectively C) the numbers

si ⊕ f−1(y′

i)(respectively si ⊕ g−1(yi)), i = 1, . . . , k.

Step 6. B (respectively C) is able to compute sj (respectively s′j) since she

knows x′

j = f−1(y′

j) (respectively xj′ = g−1(yj′ ) ).

As before, B and C learn the secret they want. S does not learn anything
about the choices, and neither do B and C learn more than one secret or the
choice of the other. A coalition between B and C renders this protocol to the
first protocol considered in Section 2 and, thus, B and C learn all secrets. A



coalition between S and one of the buyers reveals which secret the other buyer
wants.

Let us consider a simple example. RSA is used to construct the one-way
functions needed.

Example. Choose k = 8, n = 12. Assume that S has the following eight
12-bit secrets for sale:

s1 = 1990 = 011111000110
s2 = 471 = 000111010111
s3 = 3860 = 111100010100
s4 = 1487 = 010111001111
s5 = 2235 = 100010111011
s6 = 3751 = 111010100111
s7 = 2546 = 100111110010
s8 = 4043 = 111111001011.

Step 1. S tells B (respectively C) the function f (respectively g) based
on n1 = 7387 (respectively n2 = 2747) which is the product of the primes
p1 = 83, q1 = 89 (respectively p2 = 67, q2 = 41). The encryption and decryption
moduli are d1 = 777, e1 = 5145 (respectively d2 = 2261, e2 = 1421).

Step 2. B tells C eight 12-bit numbers xi, 1 ≤ i ≤ 8 :

x1 = 743 = 001011100111
x2 = 1988 = 011111000100
x3 = 4001 = 111110100001
x4 = 2942 = 101101111110
x5 = 3421 = 110101011101
x6 = 2210 = 100010100010
x7 = 2306 = 100100000010
x8 = 912 = 001110010000.

C tells B eight 12-bit numbers x′

i, 1 ≤ i ≤ 8 :

x′

1 = 1708 = 011010101100
x′

2
= 711 = 001011000111

x′

3
= 1969 = 011110110001

x′

4 = 3112 = 110000101000
x′

5
= 4014 = 111110101110

x′

6
= 2308 = 100100000100

x′

7 = 2212 = 100010100100
x′

8
= 222 = 000011011110.

Step 3. B wants to buy the secret s7. Therefore she computes

f(x′

7) = x′

7

e1(mod n1) = 22125145(mod 7387) = 5928.



Comparing the binary representations of x′

7
and f(x′

7
),

2212 = 0100010100100

5928 = 1011100101000

B tells C the set FBIB = {0, 1, 4, 5, 6} of FBI’s with respect to (x′

7
, f).

C wants to buy the secret s2. Therefore she computes

g(x2) = xe2

2
(mod n2) = 19881421(mod 2747) = 1660.

Comparing the binary representations of x2 and g(x2),

1988 = 11111000100

1660 = 11001111100

C tells B the set FBIC = {0, 1, 2, 6, 9, 10} of FBI’s with respect to (x2, g).
Step 4. B tells S the numbers yi, 1 ≤ i ≤ 8, where yi results from xi by

replacing every bit whose index is not in the set {0, 1, 2, 6, 9, 10} (that is every
bit whose index is in the set {3, 4, 5, 7, 8}) with its complement:

y1 = 001101011111 = 863
y2 = 011001111100 = 1660

y3 = 111000011001 = 3609
y4 = 101011000110 = 2758
y5 = 110011100101 = 3301
y6 = 100100011010 = 2330
y7 = 100010111010 = 2234
y8 = 001000101000 = 552.

C tells S the numbers y′

i, 1 ≤ i ≤ 8, where y′

i results from x′

i by replacing
every bit whose index is not in the set {0, 1, 4, 5, 6} (that is every bit whose
index is in the set {2, 3, 7, 8, 9, 10, 11, 12}) with its complement:

y′

1 = 1100100100000 = 6432
y′

2
= 1110101001011 = 7499

y′

3
= 1100000111101 = 6205

y′

4 = 1001110100100 = 5028
y′

5
= 1000000100010 = 4130

y′

6 = 1011010001000 = 5768
y′

7
= 1011100101000 = 5928

y′

8
= 1111101010010 = 8018.



Step 5. S tells B the numbers si ⊕f−1(y′

i), 1 ≤ i ≤ 8 (recall that f−1(y′) =
y′d1(mod n1) = y′777(mod 7387)):

s1 = 1990 = 0011111000110
f−1(y′

1
) = 5897 = 1011100001001

s1 ⊕ f−1(y′

1
) = 1000011001111 = 4303

s2 = 471 = 0000111010111
f−1(y′

2
) = 5546 = 1010110101010

s2 ⊕ f−1(y′

2) = 1010001111101 = 5245

s3 = 3860 = 0111100010100
f−1(y′

3
) = 4161 = 1000001000001

s3 ⊕ f−1(y′

3
) = 1111101010101 = 8021

s4 = 1487 = 0010111001111
f−1(y′

4
) = 4345 = 1000011111001

s4 ⊕ f−1(y′

4) = 1010100110110 = 5430

s5 = 2235 = 0100010111011
f−1(y′

5
) = 6070 = 1011110110110

s5 ⊕ f−1(y′

5
) = 1111100001101 = 7949

s6 = 3751 = 0111010100111
f−1(y′

6
) = 2660 = 0101001100100

s6 ⊕ f−1(y′

6) = 0010011000011 = 1219

s7 = 2546 = 0100111110010
f−1(y′

7
) = 2212 = 0100010100100

s7 ⊕ f−1(y′

7
) = 0000101010110 = 342

s8 = 4043 = 0111111001011
f−1(y′

8
) = 1469 = 0010110111101

s8 ⊕ f−1(y′

8) = 0101001110110 = 2678.

S tells C the numbers si ⊕ g−1(yi), 1 ≤ i ≤ 8 (g−1(y) = yd2(mod n2) =
y2261(mod 2747)).



s1 = 1990 = 011111000110
g−1(y1) = 576 = 001001000000

s1 ⊕ g−1(y1) = 010110000110 = 1414
s2 = 471 = 000111010111

g−1(y2) = 1988 = 011111000100
s2 ⊕ g−1(y2) = 011000010011 = 1555

s3 = 3860 = 111100010100
g−1(y3) = 1477 = 010111000101

s3 ⊕ g−1(y3) = 101011010001 = 2769

s4 = 1487 = 010111001111
g−1(y4) = 2162 = 100001110010

s4 ⊕ g−1(y4) = 110110111101 = 3517

s5 = 2235 = 100010111011
g−1(y5) = 677 = 001010100101

s5 ⊕ g−1(y5) = 101000011110 = 2590

s6 = 3751 = 111010100111
g−1(y6) = 581 = 001001000101

s6 ⊕ g−1(y6) = 110011100010 = 3298

s7 = 2546 = 100111110010
g−1(y7) = 840 = 001101001000

s7 ⊕ g−1(y7) = 101010111010 = 2746

s8 = 4043 = 111111001011
g−1(y8) = 473 = 000111011001

s8 ⊕ g−1(y8) = 111000010010 = 3602.

Step 6. B learns the secret s7 by computing the bitwise addition of x′

7 and
the 7th number received from S, that is:

x′

7
= 2212 = 100010100100

342 = 000101010110
100111110010 = 2546.



As C wants to buy the secret s2 she computes the bitwise addition between
x2 and the 2nd number received from S, that is:

x2 = 1988 = 11111000100
1555 = 11000010011

00111010111 = 471.

4 More than two buyers

We have observed that in case of many buyers the main difficulty is due to
coalitions. However, if there are at least three buyers, it seems that one honest
buyer is enough to make the cheating of the other buyers impossible. So no
honest majority is needed. Let us see how this works.

We assume that there are three buyers A, B, C and describe the protocol
from A’s point of view. A wants the secret sj .

Step 1. S tells A two one-way functions fB
A and fC

A .

Step 2. B (respectively C) tells A k random n-bit numbers xBA
1

, . . . , xBA
k (re-

spectively xCA
1 , . . . , xCA

k ).

Step 3. A tells B (respectively C) the set FBIBA (respectively FBICA) of FBI’s
with respect to the pair (xBA

j , fB
A ) (respectively the pair (xCA

j , fC
A )).

Step 4. B (respectively C) tells S the numbers yBA
i obtained from xBA

i (re-
spectively yCA

i obtained from xCA
i ), i = 1, . . . , k, by replacing every bit

whose index is not in FBIBA (respectively FBICA) with its complement.

Step 5. S tells A the numbers

si ⊕ (fB
A )−1(yBA

i ) ⊕ (fC
A )−1(yCA

i ), i = 1, . . . , k.

Step 6. A is able to compute sj since she knows xBA
j = (fB

A )−1(yBA
i ) and

xCA
j = (fC

A )−1(yCA
i ).

Analogous parts should be stated for B and C to complete the protocol.
Thus, S gives both of them two one-way functions, both of them receive numbers
from the other two buyers, etc. The protocol works in exactly the same way for
t > 3 buyers. Each of the buyers gets t − 1 one-way functions from the seller,
as well as sets of numbers from all of their fellow buyers.

It is clear that each of the buyers gets the secret she wants. It is also
clear that if all buyers are in coalition, they learn all the secrets. However, no
coalition of t − 1 (or less) dishonest buyers can gain much because every bit in
the sequences sent to them by S depends on a bit provided by the honest buyer.



5 Conclusion

In case of more than one buyer, complicated arguments working with minimum
disclosure proofs can be avoided. It seems that coalitions between buyers do
not help if at least one of the buyers is honest.

Similar ideas can be used for other cryptographic protocols as well. We hope
to return to this matter in the near future.
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