Secret Selling of Secrets with Several Buyers

Arto Salomaa and Lila Santean
Mathematics Department
University of Turku
20500 Turku, Finland

June 7, 2010

Abstract

We present a simple ANDOS protocol for the case of more than one buyer. The protocol uses bits left invariant when a one-way function is applied to a binary number.

1 Introduction

\mathbf{S} is a seller of secrets who has listed a number of questions and offers to sell the answer to any of them at a huge price which we assume to be the same for each of the secrets. The secrets could be of political importance, for instance, concerning the whereabouts of a sought-after terrorist or concerning the contents of a secret pact between two countries. A buyer \mathbf{B} wants to buy a secret but does not want to disclose which one. For instance, \mathbf{B} might be an agent of a country. Disclosing the ignorance of the country concerning a specific matter might be delicate or even dangerous and might, in fact, induce a new secret for \mathbf{S} to sell.

The abbreviation ANDOS (All or Nothing Disclosure of Secrets) is used in [1] for protocols dealing with the situation described above. Although this is not important, we may assume that the secrets are factorizations of products of two large primes. Indeed, if the original secrets are encrypted using RSA (with a different RSA system for each secret), then a particular secret can be read whenever the factorization of the corresponding modulus becomes known.

More background material is contained in [3]. Apart from being of interest on their own right, ANDOS protocols can be used as building blocks in more sophisticated protocols. Of special interest among such protocols are the protocols for secret balloting systems when elections are carried over a computer network. Among the conditions to be met, [2], are the secrecy of votes and exclusion of illegal votes, as well as the possibility of each voter to check that his/her (hereinafter her) vote is taken into account and also to cancel her vote.

2 One buyer

Assume that s_{1}, \ldots, s_{k} are secrets possesed by \mathbf{S}, each of them containing n bits. For each s_{i}, \mathbf{S} has publicized what the secret is about. \mathbf{B} has decided to buy the secret s_{j}. S should transfer it to her without learning the index j. The following is an obvious first try for a protocol.

Step 1. \mathbf{S} tells \mathbf{B} a one-way function f mapping n-bit numbers into n-bit numbers but keeps the inverse f^{-1} to herself.

Step 2. B chooses k random n-bit numbers x_{1}, \ldots, x_{k} and tells \mathbf{S} the k-tuple $\left(y_{1}, \ldots, y_{k}\right)$, where

$$
y_{i}= \begin{cases}x_{i} & \text { if } i \neq j \\ f\left(x_{i}\right) & \text { if } i=j\end{cases}
$$

Step 3. \mathbf{S} tells \mathbf{B} the sequence of numbers

$$
s_{i} \oplus f^{-1}\left(y_{i}\right), i=1, \ldots, k
$$

(Here \oplus denotes bitwise addition, also called XOR.)
Step 4. B is able to compute s_{j} since she knows $x_{j}=f^{-1}\left(y_{j}\right)$.
Clearly, \mathbf{S} has no way of distinguishing the exceptional value y_{j} and, hence, does not learn which secret \mathbf{B} wants. On the other hand, if \mathbf{B} is an active cheater (that is, deviates from the protocol), she can present several or all of the numbers y_{i} to \mathbf{S} in the form $f\left(x_{i}\right)$.

In the next protocol \mathbf{B} has no way of cheating but if \mathbf{S} is an active cheater, she can learn which secret \mathbf{B} wants. Thus, the situation is reverse to that encountered in the previous protocol.

For an injection f mapping n-bit numbers into n-bit numbers and an n-bit number x, we say that an index $i, 1 \leq i \leq n$, is a fixed bit index (FBI) with respect to the pair (x, f) if the i^{\prime} th bit in x equals the i 'th bit in $f(x)$. Clearly, i is FBI with respect to (x, f) iff i is FBI with respect to $\left(f(x), f^{-1}\right)$. If f has a reasonably random behaviour (like the customarily considered encryption functions) then, for a random x, roughly $n / 2$ indices are FBI's with respect to (x, f).

We are now ready for the protocol.
Step 1. \mathbf{S} tells \mathbf{B} a one-way function f but keeps the inverse f^{-1} to herself. She also tells $\mathbf{B} k$ random n-bit numbers x_{1}, \ldots, x_{k}.

Step 2. B (who wants to buy s_{j}) tells \mathbf{S} all FBI's with respect to $\left(x_{j}, f\right)$.
Step 3. \mathbf{S} tells \mathbf{B} the numbers

$$
s_{i} \oplus f^{-1}\left(y_{i}\right), i=1, \ldots, k
$$

where y_{i} is obtained from x_{i} by replacing all bits whose indices are not in the FBI set of Step 2 with their complements.

Step 4. Since $f^{-1}\left(y_{j}\right)=x_{j}, \mathbf{B}$ is able to compute s_{j}.
The buyer \mathbf{B} cannot cheat to get two secrets since the numbers x_{j} are chosen by \mathbf{S}. On the other hand, \mathbf{S} can find j by computing FBI's with respect to each pair $\left(x_{i}, f\right)$ and comparing them with the set of Step 2.

A more sophisticated protocol can be used to prevent both \mathbf{S} and \mathbf{B} from cheating. B commits herself to a specific action, that is, specifies which secret she wants to buy. The commitment is "locked in a box" using a one-way function, but in the course of the protocol \mathbf{B} has to convince \mathbf{S} that she is acting according to the commitment. This should be done without disclosing information about the action itself-a typical case of a minimum disclosure proof. Details of such a protocol are hinted at in [1].

3 Two buyers

The difficulties met in the preceding section can be overcome in a simple way in the case of two buyers \mathbf{B} and \mathbf{C} who want to buy secrets s_{j} and $s_{j^{\prime}}$, respectively. The idea is that the buyers have individual one-way functions and each of them operates on numbers provided by the other.

Step 1. S tells B and C individually one-way functions f and g but keeps the inverses to herself.

Step 2. B tells \mathbf{C} (respectively \mathbf{C} tells $\mathbf{B}) k$ random n-bit numbers x_{1}, \ldots, x_{k} (respectively $x_{1}^{\prime}, \ldots, x_{k}^{\prime}$).

Step 3. B tells \mathbf{C} (respectively \mathbf{C} tells $\mathbf{B})$ the set FBI_{B} of FBI's with respect to $\left(x_{j}^{\prime}, f\right)$ (respectively the set FBI_{C} of FBI 's with respect to $\left(x_{j^{\prime}}, g\right)$).

Step 4. B (respectively \mathbf{C}) tells \mathbf{S} the numbers y_{1}, \ldots, y_{k} (respectively y_{1}^{\prime}, \ldots, y_{k}^{\prime}), where y_{i} results from x_{i} by replacing every bit whose index is not in FBI_{C} with its complement (respectively y_{i}^{\prime} results from x_{i}^{\prime} by replacing every bit whose index is not in FBI_{B} with its complement).

Step 5. \mathbf{S} tells to \mathbf{B} (respectively \mathbf{C}) the numbers

$$
\left.s_{i} \oplus f^{-1}\left(y_{i}^{\prime}\right) \text { (respectively } s_{i} \oplus g^{-1}\left(y_{i}\right)\right), i=1, \ldots, k
$$

Step 6. B (respectively \mathbf{C}) is able to compute s_{j} (respectively s_{j}^{\prime}) since she knows $x_{j}^{\prime}=f^{-1}\left(y_{j}^{\prime}\right)$ (respectively $\left.x_{j^{\prime}}=g^{-1}\left(y_{j^{\prime}}\right)\right)$.

As before, \mathbf{B} and \mathbf{C} learn the secret they want. \mathbf{S} does not learn anything about the choices, and neither do \mathbf{B} and \mathbf{C} learn more than one secret or the choice of the other. A coalition between \mathbf{B} and \mathbf{C} renders this protocol to the first protocol considered in Section 2 and, thus, B and \mathbf{C} learn all secrets. A
coalition between \mathbf{S} and one of the buyers reveals which secret the other buyer wants.

Let us consider a simple example. RSA is used to construct the one-way functions needed.

Example. Choose $k=8, n=12$. Assume that \mathbf{S} has the following eight 12-bit secrets for sale:

$$
\begin{aligned}
& s_{1}=1990=011111000110 \\
& s_{2}=471=000111010111 \\
& s_{3}=3860=111100010100 \\
& s_{4}=1487=010111001111 \\
& s_{5}=2235=100010111011 \\
& s_{6}=3751=111010100111 \\
& s_{7}=2546=100111110010 \\
& s_{8}=4043=111111001011
\end{aligned}
$$

Step 1. \mathbf{S} tells \mathbf{B} (respectively \mathbf{C}) the function f (respectively g) based on $n_{1}=7387$ (respectively $n_{2}=2747$) which is the product of the primes $p_{1}=83, q_{1}=89$ (respectively $p_{2}=67, q_{2}=41$). The encryption and decryption moduli are $d_{1}=777, e_{1}=5145$ (respectively $d_{2}=2261, e_{2}=1421$).

Step 2. B tells \mathbf{C} eight 12 -bit numbers $x_{i}, 1 \leq i \leq 8$:

$$
\begin{aligned}
& x_{1}=743=001011100111 \\
& x_{2}=1988=011111000100 \\
& x_{3}=4001=111110100001 \\
& x_{4}=2942=101101111110 \\
& x_{5}=3421=110101011101 \\
& x_{6}=2210=100010100010 \\
& x_{7}=2306=100100000010 \\
& x_{8}=912=001110010000
\end{aligned}
$$

\mathbf{C} tells \mathbf{B} eight 12 -bit numbers $x_{i}^{\prime}, 1 \leq i \leq 8$:

$$
\begin{aligned}
& x_{1}^{\prime}=1708=011010101100 \\
& x_{2}^{\prime}=711=001011000111 \\
& x_{3}^{\prime}=1969=011110110001 \\
& x_{4}^{\prime}=3112=110000101000 \\
& x_{5}^{\prime}=4014=111110101110 \\
& x_{6}^{\prime}=2308=100100000100 \\
& x_{7}^{\prime}=2212=100010100100 \\
& x_{8}^{\prime}=222=000011011110 .
\end{aligned}
$$

Step 3. B wants to buy the secret s_{7}. Therefore she computes

$$
f\left(x_{7}^{\prime}\right)=x_{7}^{\prime e_{1}}\left(\bmod n_{1}\right)=2212^{5145}(\bmod 7387)=5928
$$

Comparing the binary representations of x_{7}^{\prime} and $f\left(x_{7}^{\prime}\right)$,

$$
\begin{aligned}
& 2212=0100010100100 \\
& 5928=1011100101000
\end{aligned}
$$

\mathbf{B} tells \mathbf{C} the set $\mathrm{FBI}_{B}=\{0,1,4,5,6\}$ of FBI's with respect to $\left(x_{7}^{\prime}, f\right)$.
\mathbf{C} wants to buy the secret s_{2}. Therefore she computes

$$
g\left(x_{2}\right)=x_{2}^{e_{2}}\left(\bmod n_{2}\right)=1988^{1421}(\bmod 2747)=1660
$$

Comparing the binary representations of x_{2} and $g\left(x_{2}\right)$,

$$
\begin{aligned}
& 1988=11111000100 \\
& 1660=11001111100
\end{aligned}
$$

\mathbf{C} tells \mathbf{B} the set $\mathrm{FBI}_{C}=\{0,1,2,6,9,10\}$ of FBI 's with respect to $\left(x_{2}, g\right)$.
Step 4. B tells \mathbf{S} the numbers $y_{i}, 1 \leq i \leq 8$, where y_{i} results from x_{i} by replacing every bit whose index is not in the set $\{0,1,2,6,9,10\}$ (that is every bit whose index is in the set $\{3,4,5,7,8\}$) with its complement:

$$
\begin{aligned}
& y_{1}=001101011111=863 \\
& y_{2}=011001111100=1660 \\
& y_{3}=111000011001=3609 \\
& y_{4}=101011000110=2758 \\
& y_{5}=110011100101=3301 \\
& y_{6}=100100011010=2330 \\
& y_{7}=100010111010=2234 \\
& y_{8}=001000101000=552 .
\end{aligned}
$$

\mathbf{C} tells \mathbf{S} the numbers $y_{i}^{\prime}, 1 \leq i \leq 8$, where y_{i}^{\prime} results from x_{i}^{\prime} by replacing every bit whose index is not in the set $\{0,1,4,5,6\}$ (that is every bit whose index is in the set $\{2,3,7,8,9,10,11,12\}$) with its complement:

$$
\begin{aligned}
& y_{1}^{\prime}=1100100100000=6432 \\
& y_{2}^{\prime}=1110101001011=7499 \\
& y_{3}^{\prime}=1100000111101=6205 \\
& y_{4}^{\prime}=1001110100100=5028 \\
& y_{5}^{\prime}=1000000100010=4130 \\
& y_{6}^{\prime}=1011010001000=5768 \\
& y_{7}^{\prime}=1011100101000=\mathbf{5 9 2 8} \\
& y_{8}^{\prime}=1111101010010=8018 .
\end{aligned}
$$

Step 5. \mathbf{S} tells B the numbers $s_{i} \oplus f^{-1}\left(y_{i}^{\prime}\right), 1 \leq i \leq 8$ (recall that $f^{-1}\left(y^{\prime}\right)=$ $\left.y^{\prime d_{1}}\left(\bmod n_{1}\right)=y^{\prime 777}(\bmod 7387)\right)$:

$$
\begin{aligned}
& s_{1}=1990=0011111000110 \\
& f^{-1}\left(y_{1}^{\prime}\right)=5897=1011100001001 \\
& s_{1} \oplus f^{-1}\left(y_{1}^{\prime}\right)=\quad \overline{1000011001111}=4303 \\
& s_{2}=471=0000111010111 \\
& f^{-1}\left(y_{2}^{\prime}\right)=5546=1010110101010 \\
& s_{2} \oplus f^{-1}\left(y_{2}^{\prime}\right) \quad \overline{1010001111101}=5245 \\
& \begin{aligned}
s_{3} & =3860
\end{aligned}=0111100010100 \\
& f^{-1}\left(y_{3}^{\prime}\right)=4161=\underline{1000001000001} \\
& s_{3} \oplus f^{-1}\left(y_{3}^{\prime}\right)=\quad \frac{1001101010101}{11111021} \\
& s_{4}=1487=0010111001111 \\
& f^{-1}\left(y_{4}^{\prime}\right)=4345=1000011111001 \\
& s_{4} \oplus f^{-1}\left(y_{4}^{\prime}\right)=\overline{1010100110110}=5430 \\
& s_{5}=2235=0100010111011 \\
& f^{-1}\left(y_{5}^{\prime}\right)=6070=1011110110110 \\
& s_{5} \oplus f^{-1}\left(y_{5}^{\prime}\right)=\quad \overline{1111100001101}=7949 \\
& s_{6}=3751=0111010100111 \\
& f^{-1}\left(y_{6}^{\prime}\right)=2660=\underline{0101001100100} \\
& s_{6} \oplus f^{-1}\left(y_{6}^{\prime}\right)=\quad-\frac{1010011000011}{001001100011}=1219 \\
& \begin{aligned}
s_{7} & =2546=0100111110010 \\
f^{-1}\left(y_{7}^{\prime}\right) & =2212=\frac{0100010100100}{0000101010110}=\mathbf{3 4 2}
\end{aligned} \\
& s_{8}=4043=0111111001011 \\
& f^{-1}\left(y_{8}^{\prime}\right)=1469=0010110111101 \\
& s_{8} \oplus f^{-1}\left(y_{8}^{\prime}\right) \quad=\quad \overline{0101001110110}=2678 .
\end{aligned}
$$

\mathbf{S} tells \mathbf{C} the numbers $s_{i} \oplus g^{-1}\left(y_{i}\right), 1 \leq i \leq 8\left(g^{-1}(y)=y^{d_{2}}\left(\bmod n_{2}\right)=\right.$ $\left.y^{2261}(\bmod 2747)\right)$.

$$
\begin{aligned}
& s_{1}=1990=011111000110 \\
& \begin{aligned}
g^{-1}\left(y_{1}\right) & =576=\frac{001001000000}{010110000110}=1414
\end{aligned} \\
& s_{2}=471=000111010111 \\
& \begin{array}{l}
g^{-1}\left(y_{2}\right)=1988=\frac{011111000100}{011000010011}=\mathbf{1 5 5 5} \\
g^{-1}\left(y_{2}\right)=
\end{array} \\
& s_{3}=3860=111100010100 \\
& \begin{aligned}
g^{-1}\left(y_{3}\right) & =1477=\frac{010111000101}{101011010001}=2769 \\
s_{3} \oplus g^{-1}\left(y_{3}\right) & =
\end{aligned} \\
& \begin{aligned}
s_{4} & =1487=010111001111 \\
g^{-1}\left(y_{4}\right) & =2162=\frac{100001110010}{110110111101}=3517 \\
s_{4} \oplus g^{-1}\left(y_{4}\right) & =
\end{aligned} \\
& s_{5}=2235=100010111011 \\
& g^{-1}\left(y_{5}\right)=677=001010100101 \\
& s_{5} \oplus g^{-1}\left(y_{5}\right) \quad \overline{101000011110}=2590 \\
& s_{6}=3751=111010100111 \\
& \begin{array}{l}
g^{-1}\left(y_{6}\right)=581=\frac{001001000101}{110011100010}=3298 \\
g^{-1}\left(y_{6}\right)=
\end{array} \\
& s_{7}=2546=100111110010 \\
& g^{-1}\left(y_{7}\right)=840=001101001000 \\
& s_{7} \oplus g^{-1}\left(y_{7}\right) \quad=\quad \overline{101010111010}=2746 \\
& s_{8}=4043=111111001011 \\
& \begin{aligned}
g^{-1}\left(y_{8}\right) & =473=\frac{000111011001}{111000010010}=3602 .
\end{aligned}
\end{aligned}
$$

Step 6. B learns the secret s_{7} by computing the bitwise addition of x_{7}^{\prime} and the 7 th number received from \mathbf{S}, that is:

$$
\begin{aligned}
x_{7}^{\prime}=2212 & =100010100100 \\
342 & =\frac{000101010110}{100111110010}=\mathbf{2 5 4 6}
\end{aligned}
$$

As \mathbf{C} wants to buy the secret s_{2} she computes the bitwise addition between x_{2} and the 2 nd number received from \mathbf{S}, that is:

$$
\begin{aligned}
x_{2}=1988 & =11111000100 \\
1555 & =\frac{11000010011}{00111010111}=\mathbf{4 7 1}
\end{aligned}
$$

4 More than two buyers

We have observed that in case of many buyers the main difficulty is due to coalitions. However, if there are at least three buyers, it seems that one honest buyer is enough to make the cheating of the other buyers impossible. So no honest majority is needed. Let us see how this works.

We assume that there are three buyers $\mathbf{A}, \mathbf{B}, \mathbf{C}$ and describe the protocol from A's point of view. A wants the secret s_{j}.

Step 1. \mathbf{S} tells \mathbf{A} two one-way functions f_{A}^{B} and f_{A}^{C}.
Step 2. B (respectively \mathbf{C}) tells $\mathbf{A} k$ random n-bit numbers $x_{1}^{B A}, \ldots, x_{k}^{B A}$ (respectively $\left.x_{1}^{C A}, \ldots, x_{k}^{C A}\right)$.

Step 3. A tells \mathbf{B} (respectively \mathbf{C}) the set FBI_{A}^{B} (respectively FBI_{A}^{C}) of FBI's with respect to the pair $\left(x_{j}^{B A}, f_{A}^{B}\right)$ (respectively the pair $\left.\left(x_{j}^{C A}, f_{A}^{C}\right)\right)$.

Step 4. B (respectively \mathbf{C}) tells \mathbf{S} the numbers $y_{i}^{B A}$ obtained from $x_{i}^{B A}$ (respectively $y_{i}^{C A}$ obtained from $\left.x_{i}^{C A}\right), i=1, \ldots, k$, by replacing every bit whose index is not in FBI_{A}^{B} (respectively FBI_{A}^{C}) with its complement.

Step 5. \mathbf{S} tells A the numbers

$$
s_{i} \oplus\left(f_{A}^{B}\right)^{-1}\left(y_{i}^{B A}\right) \oplus\left(f_{A}^{C}\right)^{-1}\left(y_{i}^{C A}\right), i=1, \ldots, k
$$

Step 6. A is able to compute s_{j} since she knows $x_{j}^{B A}=\left(f_{A}^{B}\right)^{-1}\left(y_{i}^{B A}\right)$ and $x_{j}^{C A}=\left(f_{A}^{C}\right)^{-1}\left(y_{i}^{C A}\right)$.

Analogous parts should be stated for \mathbf{B} and \mathbf{C} to complete the protocol. Thus, \mathbf{S} gives both of them two one-way functions, both of them receive numbers from the other two buyers, etc. The protocol works in exactly the same way for $t>3$ buyers. Each of the buyers gets $t-1$ one-way functions from the seller, as well as sets of numbers from all of their fellow buyers.

It is clear that each of the buyers gets the secret she wants. It is also clear that if all buyers are in coalition, they learn all the secrets. However, no coalition of $t-1$ (or less) dishonest buyers can gain much because every bit in the sequences sent to them by \mathbf{S} depends on a bit provided by the honest buyer.

5 Conclusion

In case of more than one buyer, complicated arguments working with minimum disclosure proofs can be avoided. It seems that coalitions between buyers do not help if at least one of the buyers is honest.

Similar ideas can be used for other cryptographic protocols as well. We hope to return to this matter in the near future.

References

[1] G.Brassard, C.Crepeau and J.-M Robert. All-or-nothing disclosure of secrets. Springer Lecture Notes in Computer Science 263(1987) 234-38.
[2] H.Nurmi and A.Salomaa. A cryptographic approach to the secret ballot. Behavioral Science, to appear.
[3] A.Salomaa. Public-Key Cryptography. EATCS Monographs in Theoretical Computer Science, Springer-Verlag, in print.

